Selection on the morphology–physiology‐performance nexus: Lessons from freshwater stickleback morphs
نویسندگان
چکیده
Conspecifics inhabiting divergent environments frequently differ in morphology, physiology, and performance, but the interrelationships amongst traits and with Darwinian fitness remains poorly understood. We investigated population differentiation in morphology, metabolic rate, and swimming performance in three-spined sticklebacks (Gasterosteus aculeatus L.), contrasting a marine/ancestral population with two distinct freshwater morphotypes derived from it: the "typical" low-plated morph, and a unique "small-plated" morph. We test the hypothesis that similar to plate loss in other freshwater populations, reduction in lateral plate size also evolved in response to selection. Additionally, we test how morphology, physiology, and performance have evolved in concert as a response to differences in selection between marine and freshwater environments. We raised pure-bred second-generation fish originating from three populations and quantified their lateral plate coverage, burst- and critical swimming speeds, as well as standard and active metabolic rates. Using a multivariate QST-FST framework, we detected signals of directional selection on metabolic physiology and lateral plate coverage, notably demonstrating that selection is responsible for the reduction in lateral plate coverage in a small-plated stickleback population. We also uncovered signals of multivariate selection amongst all bivariate trait combinations except the two metrics of swimming performance. Divergence between the freshwater and marine populations exceeded neutral expectation in morphology and in most physiological and performance traits, indicating that adaptation to freshwater habitats has occurred, but through different combinations of traits in different populations. These results highlight both the complex interplay between morphology, physiology and performance in local adaptation, and a framework for their investigation.
منابع مشابه
Spatio-temporal patterns in pelvic reduction in threespine stickleback (Gasterosteus aculeatus L.) in Lake Storvatnet
Questions: The pelvic girdle with associated spines is an integrated anti-predator defence apparatus, and is assumed to protect against piscivores in the threespine stickleback. On the other hand, it might be costly to produce the pelvic apparatus in ion-poor and mineralchallenging freshwater. Hypothesis: Stickleback with a reduced pelvic apparatus should use more shelter and be more nocturnal,...
متن کاملParallel evolution by correlated response: lateral plate reduction in threespine stickleback.
Recent work has revealed the molecular mechanisms governing one of the most dramatic examples of parallel evolution in nature: the repeated loss of lateral plate armor in freshwater populations of threespine stickleback. Yet, the ecological mechanisms responsible for armor loss remain unclear. Using a balanced experimental design, we examined Heuts' (1947) hypothesis that selection due to diffe...
متن کاملHabitat-specific trends in ontogeny of body shape in stickleback from coastal archipelago: potential for rapid shifts in colonizing populations.
We investigated ontogenetic trends in body shape of 54 freshwater (48 lake, seven stream) and six anadromous populations of threespine stickleback (Gasterosteus aculeatus L.) from the Haida Gwaii archipelago off the west coast of Canada. Multivariate analysis of covariance on the partial warp scores generated from 12 homologous landmarks on 1,958 digital images of subadult and adult male stickl...
متن کاملEcological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape
Threespine sticklebacks, small fish with a circumglobal distribution in coastal marine and freshwater of the northern hemisphere, present a remarkable scope of variation in body and fin shape among populations. The repeated evolution of divergent body shapes in a radiation of stickleback from Cook Inlet, Alaska suggests that diversification has proceeded by extensive parallel selection. To expl...
متن کاملTwelve years of contemporary armor evolution in a threespine stickleback population.
Loberg Lake, Alaska was colonized by sea-run Gasterosteus aculeatus between 1983 and 1988, after the original stickleback population was exterminated. Annual samples from 1990 to 2001 reveal substantial evolution of lateral plate (armor) phenotypes. The 1990 sample was nearly monomorphic for the complete plate morph, which is monomorphic in local sea-run populations; the low plate morph, which ...
متن کامل